Effect of pH on Different Manganese Media on Seed Viability of Seven Local Soybeans Varieties (Glycine max L. Merr)
Article Main Content
Manganese (Mn) has two roles in plant metabolic processes: an essential micronutrient and a toxic element when it is in excess. Mn toxicity is favored in acidic nature soils. However, it may possible that Mangan affects crop growth even though it is in neutral states. This study aimed to determine the effect of manganese on seed germination both in low pH and in neutral pH. The study was compiled using a Randomized Complete Block Design with two factors soybean local varieties (Anjasmoro, Grobogan, Derap-1, Detap-1, Deja-1, Dega-1, dan Dena-1) and differences in media the substrate pH levels (Mn with pH 4.5, Mn with pH 6-7, and control without Mn pH 7). The results showed that Mn at low pH (acid condition) expressed the worst germination as compared to all treatments by inhibiting radicle development with shorter roots growth. Germination growth under neutral pH manganese media remained hampered in development but not as bad as in low pH manganese media. Anjasmoro variety was observed relatively tolerant to manganese media in neutral pH, while Dega-1 and Deja-1 varieties were the least tolerant. At low pH conditions with manganese metal content, all varieties showed worse germination compared to neutral and control pH manganese media.
References
-
BPTP Lampung [Internet]. lampung.litbang.pertanian.go.id. [cited 2022 Nov 7]. Available from: http://lampung.litbang.pertanian.go.id/.
Google Scholar
1
-
Harsono A, Harnowo D, Ginting E, Adi Anggraeni Elisabeth D. Soybean in Indonesia: Current Status, Challenges and Opportunities to Achieve Self-Sufficiency. Legumes Research - Volume 1. 2022 Oct 12; DOI: http://dx.doi.org/10.5772/intechopen.101264.
Google Scholar
2
-
Santos EF, Kondo Santini JM, Paixão AP, Júnior EF, Lavres J, Campos M, Reis AR. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem. 2017 Apr; 113: 6-19. doi: http://dx.doi.org/10.1016/j.plaphy.2017.01.022 . Epub 2017 Jan 25. PMID: 28157580.
Google Scholar
3
-
Stanton M. Managing soil pH for optimal soybean production. USA: Michigan State University Extension Service, 2012.
Google Scholar
4
-
Kuswantoro H. Response of Some Soybean Germplasm to Mangan Toxicity. International Journal of Biology. 2015;7(3).
Google Scholar
5
-
Seran R. Pengaruh mangan sebagai unsur hara mikro esensial terhadap kesuburan tanah dan tanaman. Jurnal Pendidikan Biologi. 2017;2(1):13–4. Indonesian.
Google Scholar
6
-
Habibah. Manganese speciation in selected agricultural soils of peninsular Malaysia. American Journal of Environmental Sciences. 2014 Feb 1;10(2):148–56. doi:10.3844/ajessp.2014.148.156.
Google Scholar
7
-
Sims JT. Soil pH effects on the distribution and plant availability of manganese, copper, and zinc. Soil Science Society of America Journal. 1986 Mar; 50(2): 367–73.
Google Scholar
8
-
Bhupendra K, Ghazala R. Effect of arsenic, manganese and chromium on in vitro seed germination of black gram (Vigna mungo L.) and green gram (Vigna radiata L.). Journal of Chemical and Pharmaceutical Research. 2014;6(5):1072–5.
Google Scholar
9
-
Mumthas S, Chidambaram L. Effect of arsenic and manganese on cell division of green gram. Sundaramoorthy A, Sankar G, editors. International journal of Current Research. 2010;2.
Google Scholar
10
-
Kuswantoro H. Differential response of roots growth of soybean germplasm under low pH and manganese toxicit. Biodiversitas. 2017;18(1):257–62.
Google Scholar
11
-
Aisah AR, Herawati N. Karakteristik varietas unggul baru kedelai balitbangtan pada agroekosistem lahan yang berbeda [Internet]. 2017. Available from: http://ntb.litbang.pertanian.go.id/infotek/7-artikel19.pdf.
Google Scholar
12
-
Widajati E, Murniati E, Palupi E, Kartika T, Suhartono M, Qadir A. Dasar ilmu dan teknologi benih. IPB Press. Bogor; 2017. Indonesian.
Google Scholar
13
-
Hartawan R, Djafar Z, Negara Z, Hasmeda M. Pengaruh panjang hari, asam indol asetat, dan fosfor terhadap tanaman kedelai dan kualitas benih dalam penyimpanan. Jurnal Agronomi Indonesia. 2017. 39:7–12. Indonesian.
Google Scholar
14
-
Haitami A. Tampilan agronomi beberapa varietas unggul kedelai (glycine max L.) di tanah ultisol kabupaten kuantan singingi. Jurnal Menara Ilmu. 2021;15(1). Indonesian.
Google Scholar
15
-
Liu R, Zhang H, Lal R. Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? Water, Air, & Soil Pollution. 2016 Jan;227(1). doi:10.1007/s11270-015-2738-2.
Google Scholar
16
-
Mai K, Williams RA. Response of oak and maple seed germination and seedling growth to different manganese fertilizers in a cultured substratum. Forests. 2019; DOI 10.3390/f10070547.
Google Scholar
17
-
Rogalla H, Römheld V. Mechanism of silicon-mediated manganese tolerance of Cucumis sativus L.: Effect of silicon nutrition on manganese concentration in the intercellular washing fluid. In Plant Nutrition. Horst WJ, Schenk M.K, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, Wirén N, Wittenmayer L. Dordrecht: Springer; 2001, vol. 92.
Google Scholar
18
-
Kwano BH, VIoreira A, Larissa A, Moraes, Noqueira MA. Magnesium-manganese interaction in soybean cultivars with different nutritional requirements. Journal Of Plant Nutrition. 2016; 40:372–81.
Google Scholar
19
-
Marcar N., Graham RD. Effect of seed manganese content on the growth of heat (Triticum aestivum) under manganese deficiency. Plant and Soil. 1986;96:165–73.
Google Scholar
20
-
Moroni J, Briggs K, Blennis P, Taylor G. Generation means analysis of spring wheat (Triticum aestivum.L.) seedlings tolerance to high level of manganese. Euphytica. 2013;189:89–100.
Google Scholar
21